Afatinib circumvents multidrug resistance via dually inhibiting ATP binding cassette subfamily G member 2 in vitro and in vivo

نویسندگان

  • Xiao-kun Wang
  • Kenneth Kin Wah To
  • Li-yan Huang
  • Jing-hong Xu
  • Ke Yang
  • Fang Wang
  • Zhen-cong Huang
  • Sheng Ye
  • Li-wu Fu
چکیده

Multidrug resistance (MDR) to chemotherapeutic drugs is a formidable barrier to the success of cancer chemotherapy. Expressions of ATP-binding cassette (ABC) transporters contribute to clinical MDR phenotype. In this study, we found that afatinib, a small molecule tyrosine kinase inhibitor (TKI) targeting EGFR, HER-2 and HER-4, reversed the chemoresistance mediated by ABCG2 in vitro, but had no effect on that mediated by multidrug resistance protein ABCB1 and ABCC1. In addition, afatinib, in combination with topotecan, significantly inhibited the growth of ABCG2- overexpressing cell xenograft tumors in vivo. Mechanistic investigations exhibited that afatinib significantly inhibited ATPase activity of ABCG2 and downregulated expression level of ABCG2, which resulted in the suppression of efflux activity of ABCG2 in parallel to the increase of intracellular accumulation of ABCG2 substrate anticancer agents. Taken together, our findings may provide a new and useful combinational therapeutic strategy of afatinib with chemotherapeutical drug for the patients with ABCG2 overexpressing cancer cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Afatinib reverses multidrug resistance in ovarian cancer via dually inhibiting ATP binding cassette subfamily B member 1

ABCB1-mediated multidrug resistance (MDR) remains a major obstacle to successful chemotherapy in ovarian cancer. Herein, afatinib at nontoxic concentrations significantly reversed ABCB1-mediated MDR in ovarian cancer cells in vitro (p < 0.05). Combining paclitaxel and afatinib caused tumor regressions and tumor necrosis in A2780T xenografts in vivo. More interestingly, unlike reversible TKIs, a...

متن کامل

The role of ATP-binding cassette transporter A2 in childhood acute lymphoblastic leukemia multidrug resistance

Acute lymphoblastic leukemia (ALL) is one of the most prevalent hematologic malignancies in children. Although the cure rate of ALL has improved over the past decades, the most important reason for ALL treatment failure is multidrug resistance (MDR) phenomenon. The current study aims to explain the mechanisms involved in multidrug resistance of childhood ALL, and introduces ATP-binding cassette...

متن کامل

Masitinib antagonizes ATP-binding cassette subfamily G member 2-mediated multidrug resistance

In this in vitro study, we determined whether masitinib could reverse multidrug resistance (MDR) in cells overexpressing the ATP binding cassette subfamily G member 2 (ABCG2) transporter. Masitinib (1.25 and 2.5 µM) significantly decreases the resistance to mitoxantrone (MX), SN38 and doxorubicin in HEK293 and H460 cells overexpressing the ABCG2 transporter. In addition, masitinib (2.5 µM) sign...

متن کامل

Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2.

Lapatinib is active at the ATP-binding site of tyrosine kinases that are associated with the human epidermal growth factor receptor (Her-1 or ErbB1) and Her-2. It is conceivable that lapatinib may inhibit the function of ATP-binding cassette (ABC) transporters by binding to their ATP-binding sites. The aim of this study was to investigate the ability of lapatinib to reverse tumor multidrug resi...

متن کامل

Dynamic quantitative detection of ABC transporter family promoter methylation by MS-HRM for predicting MDR in pancreatic cancer

The main focus of the present study was to evaluate whether ABC transporter family promoter methylation predicted multidrug resistance in gemcitabine-resistant cancer cell lines (BxPC-3/Gem and PANC-1/Gem). Using low concentrations of gemcitabine, the cell lines acquired drug resistance with different initial gemcitabine concentrations. A novel technology, methylation-sensitive high-resolution ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014